Green Ports and Shipping in Asia

Simon K W NG
Head of Transport and Sustainability Research
Civic Exchange

Presentation at 7th UNCRD EST Forum, Bali, Indonesia | 23 April 2013
Plenary Session 5: Green Freight Issues – A Framework for a Regional Agreement on Green Freight in Asia

Note: As a UN rule Hong Kong should be read as Hong Kong Special Administrative Region of China.
The costs of port and ship emissions
Exhaust emissions from ships
Marine fuel

- Bunker fuel
 - Bunker fuel/marine fuel oil (max. 3.5% sulphur (S)) burnt by ocean-going vessels is thousands of time higher in sulphur content than fuel used by vehicles (0.005% S for ULSD; 0.001% S for Euro V diesel), leading to higher \(\text{SO}_2 \) and \(\text{PM}_{10} \) emissions.
Ship PM$_{2.5}$ emissions and mortality

Proximity to population and health impact
International best practice
International Maritime Organization (IMO)
 • adopted MARPOL Convention Annex VI in 2005
 • global cap on fuel sulphur limits (3.5% now, 0.5% post-2020)
 • Emission control areas (ECAs) (1% now, 0.1% post-2015)

In North America
 • Clean Air Action Plan (San Pedro Bay Port)
 • Fuel switching
 • Vessel speed reduction
 • On-shore power
 • Clean truck program
 • North America ECA
International trend in emissions control

- Europe
 - Effective from 1 January 2010, all ships are required to use fuel with a sulphur content of 0.1% or less while at berth in all European Community ports and within inland waters
 - On-shore power
 - LNG for vessels
 - Baltic Sea ECA and North Sea ECA
 - Electrification of cargo handling equipment
Selected emissions control measures

<table>
<thead>
<tr>
<th>Technology</th>
<th>General Emissions Control Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Diesel Oxidative Catalysts (DOC)</td>
</tr>
<tr>
<td></td>
<td>Diesel Particulate Filters (DPF)</td>
</tr>
<tr>
<td></td>
<td>Selective Catalytic Reduction (SCR)</td>
</tr>
<tr>
<td></td>
<td>Exhaust Gas Scrubbers</td>
</tr>
<tr>
<td></td>
<td>Shore power</td>
</tr>
<tr>
<td>Application</td>
<td>Trucks CHE (>750hp) Marine & CHE (<750hp) Locomotives</td>
</tr>
<tr>
<td>Targeted Air Pollutant</td>
<td>PM 20-30% HC 50-90% CO 70-90%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology</th>
<th>On-Engine Modification</th>
<th>Diesel Fuel Alternatives</th>
<th>Operational Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Exhaust Gas Recirculation (EGR)</td>
<td>Engine Replacement, Repower, Rebuild</td>
<td>Slide Valves</td>
</tr>
<tr>
<td>Application</td>
<td>Truck Marine Locomotive</td>
<td>Truck Marine Locomotive</td>
<td>Truck Marine Locomotive</td>
</tr>
<tr>
<td>Targeted Air Pollutant</td>
<td>NOx 40-50% PM 70% (with DPF)</td>
<td>NOx up to 90% PM up to 90%</td>
<td>PM 10-50% NOx 10-25%</td>
</tr>
</tbody>
</table>

Starcrest Consulting Group (2012) Developing Port Clean Air Programs
Greening harbours in Asia
Ship PM$_{2.5}$ emissions and mortality in Asia

Top ten container ports in Asia, 2011

1. Shanghai (31.7 million TEUs)
2. Singapore (29.9 million TEUs)
3. Hong Kong (24.4 million TEUs)
4. Shenzhen (22.5 million TEUs)
5. Busan (16.1 million TEUs)
6. Ningbo (14.7 million TEUs)
7. Guangzhou (14.3 million TEUs)
8. #8
9. Qingdao (13 million TEUs)
10. #10
Hong Kong’s experience:

science, engagement and policy
Study on Marine Vessels Emission Inventory in Hong Kong

- ship emission inventory for Hong Kong
- 2007 as base year
- activity-based approach
- detailed bottom-up inventory
OGV emissions by vessel type

OGV SO₂ Emission by Vessel Type (%)

OGV NOₓ Emission by Vessel Type (%)

OGV PM₁₀ Emission by Vessel Type (%)
OGV emissions by mode

- SO2
- NOx
- PM10

Bar charts showing emissions by mode:

- Fully Cellular Container Vessel
- Cruise / Ferry
- Oil Tanker
- Conventional Cargo Vessel
- Dry Bulk Carrier
- Others

Legends for emissions:
- Fairway Cruise
- Slow Cruise
- Maneuvering
- Hotelling
Spatial distribution of ship SO$_2$ emissions in Hong Kong, 2007

Legend
SO2 (tonne)
- 0.000 - 0.007
- 0.008 - 0.024
- 0.025 - 0.067
- 0.068 - 0.173
- 0.174 - 0.438
- 0.439 - 1.101
- 1.102 - 2.758
- 2.759 - 6.898
- 6.899 - 17.242
- 17.243 - 43.091
- 43.092 - 107.680
- 107.681 - 269.074

Pearl River Delta ship emissions study

Marine Vessel Smoke Emissions in Hong Kong and the Pearl River Delta

Final Report

Simon K W NG
LIN Chulin
Jimmy W M CHAN
Agnes C K YIP
Alexis K H LAU
Jimmy C H FUNG
WU Dongwei
LI Ying

Atmospheric Research Center
HKUST Fok Ying Tung Graduate School
The Hong Kong University of Science & Technology

March 2012

Health Impact Assessment of Measures to Reduce Marine Shipping Emissions

Final Report

JHK Lai
H Tsang
J Chau
CH Lee
SM McGhee
CM Wong

Department of Community Medicine
School of Public Health
The University of Hong Kong

July 2012

*correspondence: Hak-Kan Lai, PhD (email: laihk@hku.hk)

Emission inventory

Dispersion

Health impact

Policy recommendation
Spatial distribution of SO\textsubscript{2} emissions in PRD

Control scenarios

Control measure 1
Switching to 0.5% sulphur fuel at berth inside Hong Kong waters, OGVs only

Control measure 2
Switching to 0.1% sulphur fuel inside Hong Kong waters, OGVs only

Control measure 3
ECA (all vessels switching to 0.1% sulphur fuel within 100 nm of Hong Kong)

Control measure 4
Vessel speed limit at 12 knots in Hong Kong waters for OGVs

Emission reduction benefits

Hong Kong
- Baseline emission level (tonne)
 - SO₂: 16,489.3
 - NOₓ: 17,900.7
 - PM₁₀: 1,870.3
 - PM₂.₅: 1,720.7
 - VOC: 753.6
 - CO: 1,749.1

Study area (100 nm from Hong Kong)
- Baseline emission level (tonne)
 - SO₂: 141,919.7
 - NOₓ: 181,313.1
 - PM₁₀: 16,433.2
 - PM₂.₅: 15,118.6
 - VOC: 6,562.0
 - CO: 16,663.4

Health impacts

<table>
<thead>
<tr>
<th></th>
<th>Hong Kong</th>
<th>Inner PRD</th>
<th>Outer PRD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual deaths (all causes, all ages)</td>
<td>39,799</td>
<td>67,070</td>
<td>86,041</td>
<td>192,910</td>
</tr>
<tr>
<td>Excess deaths due to SO(_2) from ship emissions</td>
<td>385</td>
<td>93</td>
<td>42</td>
<td>519</td>
</tr>
</tbody>
</table>

Excess deaths under four ship emission control policies (% improvement)

<table>
<thead>
<tr>
<th>Control Measure</th>
<th>Description</th>
<th>Hong Kong</th>
<th>Inner PRD</th>
<th>Outer PRD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Measure 1</td>
<td>At-berth fuel switch (0.5% sulphur limit) in Hong Kong waters - OGVs</td>
<td>197 (49%)</td>
<td>64 (31%)</td>
<td>28 (33%)</td>
<td>288 (44%)</td>
</tr>
<tr>
<td>Control Measure 2</td>
<td>0.1% sulphur limit in Hong Kong waters - OGVs</td>
<td>114 (70%)</td>
<td>57 (39%)</td>
<td>25 (40%)</td>
<td>195 (62%)</td>
</tr>
<tr>
<td>Control Measure 3</td>
<td>ECA up to 100 nm from Hong Kong (0.1% sulphur limit) - All ships</td>
<td>33 (91%)</td>
<td>11 (88%)</td>
<td>3 (93%)</td>
<td>46 (91%)</td>
</tr>
<tr>
<td>Control Measure 4</td>
<td>Vessel speed reduction (12 knot) in Hong Kong waters - OGVs</td>
<td>229 (41%)</td>
<td>57 (39%)</td>
<td>21 (50%)</td>
<td>306 (41%)</td>
</tr>
</tbody>
</table>

Voluntary industry-led initiatives

Fair Winds Charter

The Fair Winds Charter
2011 - 2012

As international carriers, we recognize the emissions from our ships affect air quality in Hong Kong and the Pearl River Delta region. As responsible businesses, WE VOLUNTARILY COMMIT TO:

• Switching to a fuel containing 0.50% sulphur content or less ("low sulphur fuel") while at berth (at the terminal or at anchorage) in Hong Kong, to the maximum extent possible;
• Undertaking this voluntary initiative between 1 January 2011 and 31 December 2012;
• Collaborating within our sector and with the Hong Kong SAR and Guangdong Governments to introduce regulation on ship emissions, consistent with international standards.

In support of the HKLSA FAIR WINDS CHARTER, WE:

• Urge the Hong Kong SAR Government to take a lead and work with the Guangdong Government to regulate the use of low sulphur fuel in the Pearl River Delta region by 31 December 2012.
• Urge the Hong Kong SAR Government to encourage broader industry participation by providing incentives, as it has done with other transport modes.
• Encourage the container terminals to support this initiative by offering advantages to participating ships, as well as by addressing emissions from cargo handling equipment, and the trucks and local craft that service the terminals.
• Encourage ocean-going passenger liners and other maritime users of the Port of Hong Kong to use low sulphur fuel while at berth in Hong Kong.
• Encourage cargo producers and buyers to favour participating shipping lines as a way of meeting their sustainable supply chain commitments.
• Welcome the support of end consumers who purchase the goods that the shipping industry carries.

Source: http://www.civic-exchange.org/wp/fair-winds-charter/
Government incentive scheme for OGVs

Port Facilities and Light Dues Incentive Scheme For Ocean Going Vessels using Cleaner Fuel

Port Facilities and Light Dues Incentive Scheme

Background

Eligibility

Registration

List of Registered Vessels

Application

Fuel Switch Log Sheet

News and Events

References

Further Information

Background

Ocean going vessels (OGVs) run on residual oil, whose sulphur content is 2.8% on average. The emission of OGVs while at berth accounts for about 40% of their total emission within Hong Kong waters. To reduce marine emission, the Government is encouraging OGVs to use fuel with sulphur content not more than 0.5% while at berth in Hong Kong waters by a 3-year incentive scheme that reduces the port facilities and light dues of OGVs that have adopted this green practice. The use of low sulphur fuel can substantially reduce air pollution at locations close to their berthing areas.

[Back to top]

Vessel Emission Reduction

140. In 2011, marine vessels were the largest source of respirable suspended particulates, nitrogen oxides and sulphur dioxide. In particular, the emissions of ocean-going vessels at berth accounted for about 40% of their total emissions within Hong Kong waters. In September 2012, the Government launched an innovative scheme to encourage ocean-going vessels at berth to switch to low-sulphur diesel. We are also considering bringing in new legislation to enforce the requirement of fuel switch at berth. We plan to submit our proposal to this Council in the next legislative session following the completion of consultation with the maritime sector. Meanwhile, we are stepping up our efforts with the Guangdong Provincial Government in exploring the feasibility of requiring ocean-going vessels to switch to low-sulphur diesel while berthing in Pearl River Delta ports. Also, the first berth of the Kai Tak Cruise Terminal will be commissioned in the middle of this year. We plan to seek funding approval from this Council to install on-shore power supply facilities for use by cruise vessels with such facilities. This will enable cruise vessels to switch to electric power while berthing and hence minimise their impact on air quality. We are also promoting the use of cleaner fuels among local vessels. We have conducted relevant tests and consulted the relevant sector.
A new Clean Air Plan 2013

- Greening ports
 - A world trend
 - Regulating OGV
 - FWC and fuel switch incentive scheme
- Regional fuel switch at berth
- PRD ECA
- Upgrading fuel for local crafts
- On-shore power
- Slow steaming

An Extract from the *Regional Cooperation Plan on Building a Quality Living Area* on recommendations related to marine pollution.

(4) Exploring opportunities in controlling air pollutant emissions from vessels in the Greater PRD waters

① proposing to conduct a joint basic study on controlling air pollution from vessels in the Greater PRD waters by the three sides, including compilation of an emissions inventory on vessels in the Greater PRD waters, for projecting the quantity of air pollution from vessels from 2012 to 2020; and

② formulating cooperation plans on controlling air pollutant emissions from vessels. Cooperation proposals include:

- making reference to the regulations under Annex VI to the International Convention for the Prevention of Marine Pollution from Ships (MARPOL) to tackle vessel emissions, considering comprehensively the technical feasibility, emission reduction benefits and cost effectiveness of different measures, jointly formulating emissions reduction targets for vessels and their fuel standards, and actively encouraging other options that would bring similar emission reduction benefits, with a view to further strengthening control of vessel emissions;

- restricting emissions from vessels, including NOx emissions from new vessels which should be in line with the latest development of the engine manufacturing and ship building industries as well as the shipping sector;

- examining measures to encourage vehicles entering the port areas to use cleaner fuels, controlling emissions from non-road mobile machinery (NRMM), and enhancing modal coordination, with a view to reducing air pollutant emissions in their vicinity;

- exploring the possibility of using cleaner energy by providing onshore power supply to cruise vessels and ocean-going vessels berthing at the Greater PRD ports;

- considering requiring ocean-going vessels at berth and at anchorage at the Greater PRD ports to use low sulphur fuel or onshore power;

- providing incentives to encourage more ocean-going vessels to switching to cleaner fuel while at berth in Hong Kong waters; and

- studying and exploring the establishment of an “Emission Control Area” in Greater PRD waters.
Conclusion: ship emissions control in Asia

- Regulations
 - Way behind North America and Europe
 - At-berth fuel switching regulation for OGVs (Hong Kong)

- Voluntary action
 - Fair Winds Charter (Hong Kong)

- Incentive program
 - Green Port Program (Singapore)
 - Incentive Scheme for OGVs to switch fuel (Hong Kong)
End of presentation

kwsng@civic-exchange.org