Sustainable Urban Design for Road Safety

Jac Wismans

SAFER Vehicle and Traffic Safety Centre at Chalmers University, Gothenburg, Sweden
SAFETEQ Automotive Safety Consulting, The Netherlands

Intergovernmental Eleventh Regional Environmentally Sustainable Transport (EST) Forum in Asia 2-5 October 2018 Shangri-La Hotel, Ulaanbaatar, Mongolia
SAFER’s Drive and Overall Goal:

"Zero injuries in road traffic"

SAFER is an open innovation arena in the field of safe mobility focussing on safer road transports and smarter, more sustainable cities.
How can sustainable urban design for road safety contribute to Zero Accidents in Asia?

“Zero accidents” is the 3rd Vision Zero in the 2013 EST Bali declaration towards Next Generation Transport Systems in Asia
Road traffic fatalities in Asia

- South Asia
- Southeast Asia
- China
- Rest
- Total

2010 vs. 2013

SAFER
SAFETEQ
Death rate/100,000 pop. in Asia

- High Income Asia Pacific: 6.8
- South Asia: 15.3
- China: 18.8
- Russia: 18.9
- South-East Asia: 19.7
Fatalities Asia per transport mode

Others

35%
30%
18%
10%
7%
Vulnerable Road Users in Asia (2013)

- Russian Federation
- Bangladesh
- India
- Mongolia
- Myanmar
- Indonesia
- Republic of Korea
- China
- Japan
- Malaysia
- Philippines
- Lao PDR
- Sri Lanka
- Singapore
- Thailand
- Cambodia

- Pedestrians %
- Cyclists %
- Riders motorized 2- or 3 wheelers %
Fatalities are just the top of the Iceberg
(WHO 2013/2015 and Worldbank/IHME 2014)

In the Asian EST region, in addition to 700,000 fatalities, road accidents cause almost 50 million injuries of which 6 million requiring hospital admission.
How to achieve safe urban road design?
The Safe System Approach
Designing sustainable safe systems

Start already during the planning stage of land use and transportation projects to minimize travel needs and integration of safe sustainable transport modes (compact and connected urban design)
Speed risk and sustainable speed limits
How to achieve sustainable speeds?

- Education of people (limited effect) and enforcement of the speed limits
- Vehicle technologies like Automatic Emergency Braking and intelligent speed adaption (ISA)
- Traffic calming measures
Traffic Calmic measures

- Speed humps
- Speed cushions
- Chicanes
- Chokers
- Curb extensions
- Raised pedestrian crossings
- Traffic circles
- Roundabouts
Safe roads for Non Motorized Traffic (NMT)

ESCAP Minist. Conf. on Transport (*Dec. 2016, Moscow*):

- Goal 2: Making roads safer for vulnerable road users
- Goal 3: Making roads safer and reducing the severity of road crashes *and as target (a.o.):*

increase separate/secure road space for pedestrians and cyclists in urban and suburban areas (where space permits)
Safe roads for Non Motorized Traffic (cont.)

- Special attention is needed for e-bikes (helmets) and in particular speed pedelecs that can replace mopeds and motorcycles (separate lanes?)
- Good integration of NMT with Public Transport is crucial.

Note that using Public Transport is > 10 x as safe /km travelled than driving a car.
Examples other VRU safety issues

Highway through a city

Blind spots trucks

Improved sidewalk (right)
Examples of cost-benefit ratio’s of road and enforcement related safety measures

<table>
<thead>
<tr>
<th>Road-related</th>
<th>Benefit-cost ratio</th>
<th>Enforcement-related</th>
<th>Benefit-cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass roads</td>
<td>1.38</td>
<td>Speed enforcement</td>
<td>1.49</td>
</tr>
<tr>
<td>Pedestrian bridge or tunnel</td>
<td>1.47</td>
<td>Speed cameras</td>
<td>2.11</td>
</tr>
<tr>
<td>Converting T-junction to roundabout</td>
<td>1.86</td>
<td>Section control (coordinated speed cameras)</td>
<td>1.58</td>
</tr>
<tr>
<td>Converting X-junction to roundabout</td>
<td>2.62</td>
<td>Feedback signs for speed</td>
<td>2.35</td>
</tr>
</tbody>
</table>

See: Wismans et al, 9th EST Forum 2017
Discussion and conclusions

- Non Motorized Transport (NMT), well integrated with public transport, is the ultimate form of sustainable urban road transport, provided that it is safe and comfortable.
- The basis for designing a safe sustainable urban road system is the Safe System Approach.
- In order to obtain a safe sustainable urban transport system measures are needed on 1) the system level (urban planning), 2) speed, 3) road design (traffic calming and separation of NMT), 4) human behaviour (enforcement) and vehicle safety (AEB etc…).
Recommendations

- For reliable impact assessment of road safety measures, accurate reliable accident data systems have to be available.
- Urban infrastructure investments that benefit NMT are strongly recommended. If such measures cannot (yet) simply be implemented in existing infrastructure with mixed traffic, strict speed measures (< 30 km/h) should be introduced and enforced.
In the stage of road network and public transport planning road safety should be taken into account from the beginning and in any cost-benefit analysis (CBA) next to mobility and environmental impact road safety should be included in the analysis.

Since public transport is much safer per km travelled then other forms of transport, the effect of mode shifts from less safe to safer forms of transport should be taken into account in a CBA of new public transport systems.
Thanks for your attention
www.chalmers.se/safer

Contact information:
Prof. Jac Wismans, SAFER Vehicle and Traffic Safety Centre, Sweden
E-mail: jac.wismans@chalmers.se