Economic Feasibility of Biomass Utilization for Power Generation

Professor Dr. Mohammad Asadullah

Faculty of Chemical Engineering
Universiti Teknologi MARA
E-mail: asadullah@salam.uitm.edu.my
asadullah8666@yahoo.com
What is biomass and how is it formed?

$6H_2O + 6CO_2 \rightarrow C_6H_{12}O_6 + 6O_2$

Cellulose, H-cellulose, Lignin

Stored energy

Food for Human Being

Carbohydrate

House Hold & Industrial Use

MSW

Biomass 1

Biomass 2
Energy transformation

Energy

Biomass 1

MSW

Biomass 2

Source of Energy
Biomass is the Source of Fuels, Chemicals, Materials & Power

- **Fuels**
- **Chemicals**
- **Materials**
- **Power**

Millions of years

1. **Biogenesis**
2. **Metagenesis**
3. **Catagenesis**
Objective

Overall objective is to reduce millions of years to zero year.

Modern technology
Barriers of Biomass Utilization for Power Generation

Problem with Collection, transportation and storage

Characteristics
1. Flappy
2. Low density
3. Too moist

Problems
1. Collection
2. Transportation
3. Storage

Pretreatment
1. Drying
2. Pelletizing

Additional cost
Problem with conventional technology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion steam cycle</td>
<td><20%</td>
<td>High</td>
<td>Low</td>
<td>Large</td>
</tr>
<tr>
<td>Gasification steam cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasification engine cycle</td>
<td>> 35%</td>
<td>Moderate</td>
<td></td>
<td>Less than 50%</td>
</tr>
<tr>
<td></td>
<td>> 60% (CHP)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Gasification engine cycle**
 1. Efficiency > 35%
 2. Efficiency > 60% (CHP)
 3. Investment – Moderate
 4. Land space - Less than 50%
BarriersCont...

Problem with Governmental policies

Example - Malaysia

• Malaysian has policy to utilize biomass for power generation; however, it is slow process and is not friendly to private investor.

• Exporting huge oil palm biomass as pellet but not giving support to utilize it by private sectors for power generation.
Barriers Cont...

Problem with Capital Investment
Example - Malaysia

Investor → Foreign Technology Provider
Expensive

Investor → Foreign tech and Local fabricator
Expensive

Power plant
How to make biomass power technology economically feasible?

- Double the overall efficiency half is the total requirement and costing.
- Investor friendly governmental policy.
- Investor must have expert human capital.
- Investor must have own fabrication facilities.
- Investor friendly financing policy.
How to multiply the efficiency?

Downdraft gasifier with catalytic hot gas cleaning

Clean gas

Gas engine

Efficiency, 90%

Overall η_{el}, 35%

Heat recovery, 30%

Efficiency, 40%

Total efficiency for CHP = 65%
Investor friendly governmental policy

• Government must give incentive to the investor and buy the privately produced electricity with reasonable price.

• Government must give national grid facilities to supply electricity.

• Malaysia has both of the facilities.
Cost down by the expert human capital and self-fabrication facilities

• If an investor can develop expert human capital and equipment fabrication facilities, the capital cost would be less than half for setting up a power plant.

• The investor should jointly work with University expert team to jointly develop the technology.
An example to show how the biomass power production is feasible.

Example: Malaysian palm oil mill

<table>
<thead>
<tr>
<th>Total FFB process Ton/day</th>
<th>CPO, Ton/day</th>
<th>EFB, Ton/day</th>
<th>Meso-carp, Ton/day</th>
<th>PKS, Ton/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>200 (20%)</td>
<td>220 wet (22% of FFB)</td>
<td>140 wet (14% of FFB)</td>
<td>60 wet (6% of FFB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66 dry (30% of wet)</td>
<td>84 dry (60% of wet)</td>
<td>51 dry (85% of wet)</td>
</tr>
</tbody>
</table>
Example: Energy to be converted to electricity

<table>
<thead>
<tr>
<th>Total Biomass produced in a mill Ton /day</th>
<th>Total energy content MJ</th>
<th>Heat transfer to gas (90% eff) MJ</th>
<th>Heat transfer to electricity with 35% gas engine efficiency, MJ</th>
<th>Power plant can be built with 35% eff, MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>3.5×10^6</td>
<td>3.1×10^6</td>
<td>1.1×10^6</td>
<td>12.7</td>
</tr>
</tbody>
</table>
Example: Heat recovery for steam and power production

<table>
<thead>
<tr>
<th>Total exhaust gas to be produced, Ton/d</th>
<th>Exhaust gas temperature, °C</th>
<th>Heat recovery MJ</th>
<th>Steam power, MW</th>
<th>Heat recovery in steam for mill, MJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1335</td>
<td>500</td>
<td>534000</td>
<td>3</td>
<td>7.9 x 10^5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total power production MW</th>
<th>Gross Annual revenue, RM, Million</th>
<th>Gross annual revenue from CPO RM, Million</th>
<th>15 MW Power plant CAPEX RM, Million</th>
<th>Payback period Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.7</td>
<td>64.5</td>
<td>140</td>
<td>80-90</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Picture of Complete Gasifier
Figure 1. A schematic diagram of the prototype gas cleaning and conversion process for electricity generation.
Model of Biomass Power for Island of Maldives
Conclusion

- Biomass based power generation faces a number of challenges.
- The challenges can be overcome by combined effort of expert groups, investor and government.
- The challenges can be overcome by combined effort of expert groups, investor and government.
Thank You